

Selenium (Se)

Presented by:

Mohamad Rahmati

Introduction to Se

Esential element for human

There is in many selenoproteins

 Closely associated with vitamin E in it's function

Chemistry

Non metal

Several chemical forms

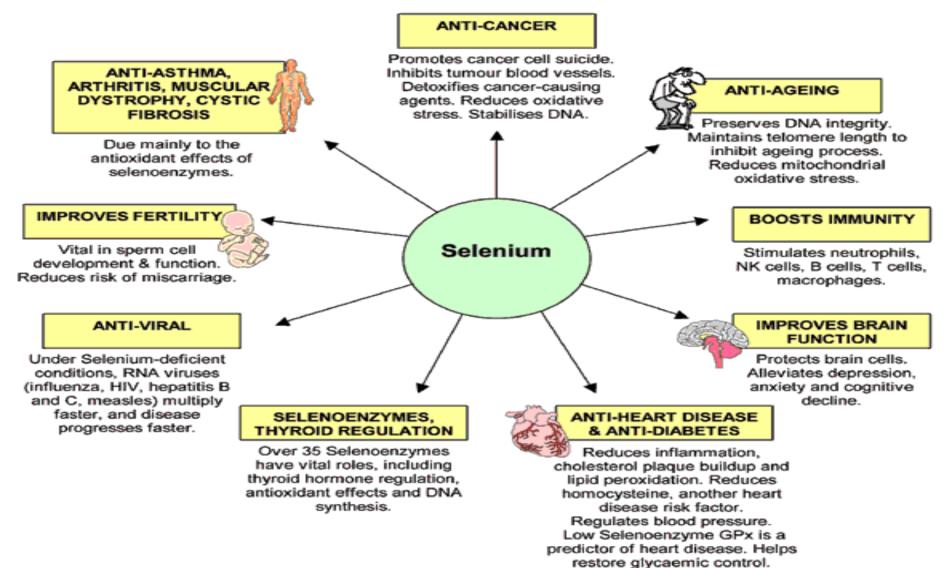
 Ingested selenium compounds: selenate, selenite, selenocyctein and selenomethionine

Dietary sources

mainly as selenomethionine from plants

 wheat and other cereal products are a good source

Absorption, Transport, Metabolism and Excretion


Absorption is not regulated

Accumulate in liver, kidney and lungs

Much of them rapidly excreted in urine

Function of Se

The Health Benefits of Selenium.

Function of Se

- More than 30 biological activity
- Glutathione peroxidase (GSHPx): has 4 isoforms (GSHPx-1 in RBC, GSHPx-2 in gastrointestinal mucosa, GSHPx-3 in blood plasma and GSHPx-4 in cell membrane)
 - Iodothyronine deiodinase: has 3 isoforms and convert T4 to T3.(type I in liver, kidney and muscle and Type II, III in brain, brown adipose tissue)

Function of Se

- Thioredoxin redoctase: has 3 isoforms (NADPH dependent)
- Selenophosphat synthetase (used of selenophosphat as a intermediate)
- Selenoprotein P: major selenoprotein in plasma, element transporter and an antioxidant
- Selenoprotein W: is in skeletal muscles
- Plays a role as a glutathione (GSH)-dependent antioxidant
- Its concentration decreases during selenium deficiency

Se and Pancreas

- There is evidence that patients with chronic pancreatitis have enhanced levels of free radical production, cytochrome P450 induction and antioxidant deficiencies, in particular selenium.
- Adequate concentrations of selenium play a key role in the secretion and action of insulin
- Two selenoproteins (glutathione peroxidase and selenoprotein P) are known to be involved in the insulin signaling pathway.

Requirements and reference nutrient intakes for Se

Daily need is 55µg for adult

Intravenous supply: less than 40µg/day

Se deficiency

liver necrosis

White muscle disease in animals

Myopathy of cardiac

Skeletal muscle

Increased oxidative stress

Sever deficiency

- Keshan disease (KD) : low soil selenium
- Keshan disease as an endemic, highly lethal congestive cardiomyopathy.
- Caused by a combination of dietary deficiency of selenium and the presence of a mutated strain of Coxsackievirus B.
- Lack of selenium results in a more virulent strain of the coxsackievirus becoming the dominant viral species.
- But the mechanism of this selection event is unclear

Sever deficiency

- Kashin disease (KBD) : sever arthritis because low soil selenium
- The highest incidence rate of KBD in China, Southeast Siberia and North Korea.
- is a chronic, endemic type of osteochondropathy (disease of the bone)
- KBD is multifactorial, selenium deficiency being the underlying factor that predisposes the target cells (chondrocytes) to oxidative stress from free-radical carriers
- Nutritional depletion in hospital paitient (patients accept no trace element supplementation)
- Symptoms: muscle weakness, cardiomyopathy, macrocytosis and pseudoalbinism

Se deficiency

- Reproductive disorders:
- Necessary for Male fertility,
- Testostrone synthesis
- Sperm viability.

Important roles of Se

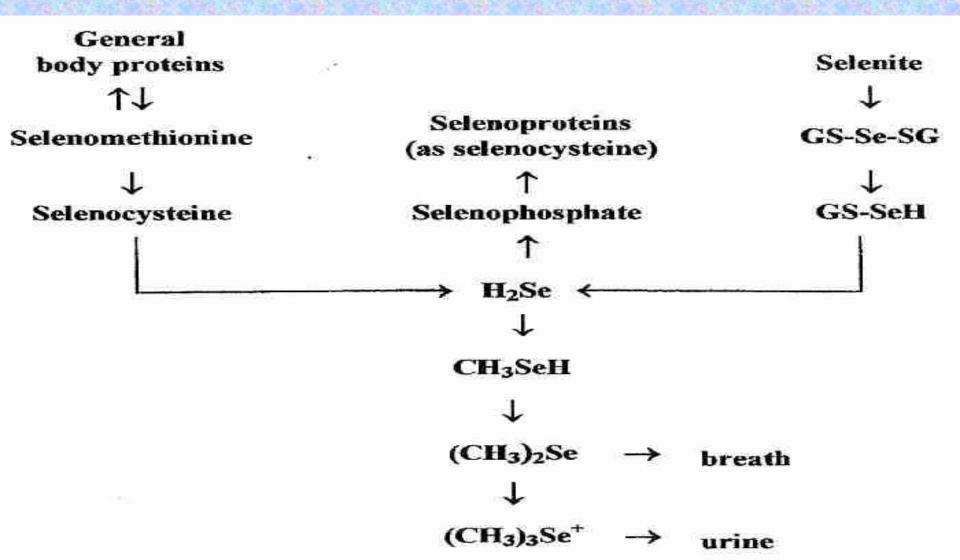
- Thyroid function:
- Thyroid deiodinase enzymes are selenoprotein

Important roles of Se

- Immune function:
- Se is important for immunocomptence, defense against AIDS

Important roles of Se

- Inflammatory condition:
- It's supplementation has positive effect in arthritis, pancreatities and asthma
- Cardiovascular disease
- Viral virulance (virulent strain of the coxsakie virus)
- Cancer chemoprevention:
- Such as liver cancer with hepatitis B, prostate cancer


Toxicity of Se

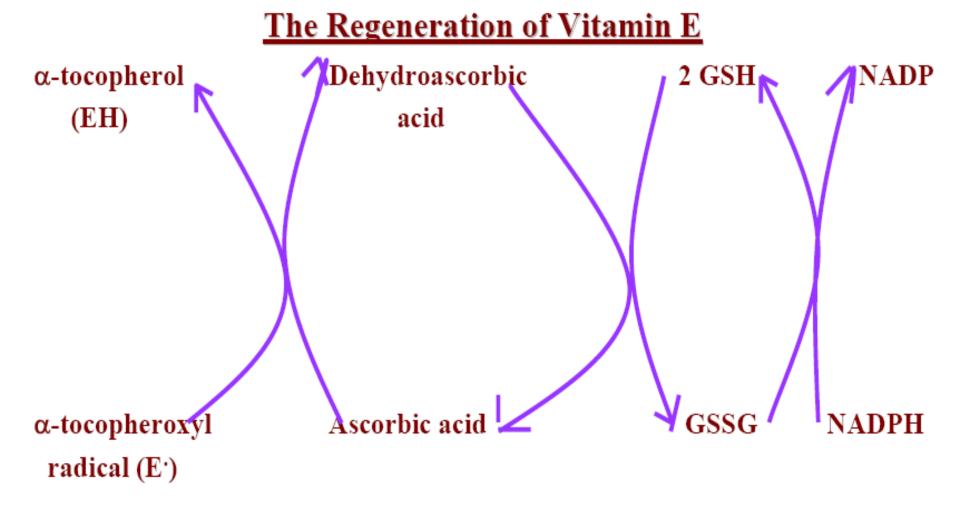
- Upper selenium called selenosis
- characteristics:
- Garlic odor in the breath (by dimethyl selenide), hair loss, nail damage, diarrhea

• Note:

 Halogenated aromatic hydrocarbons is useful in cure (caused faster methylation of selenid)

Metabolism of Se

Laboratory assessment of status


- Whole blood as a main indicator of selenium status
- Determined after acid digestion using a fluorometric method, atomic absorption spectroscopy.
- Red cell GSHPx-1 and plasma GSHPx-3 are assayed by enzymatic methods
- Selenoprotein P in plasma determined by immunological methods or monoclonal antibodies by affinity chromatography
- Hair and nail selenium are useful as a measure of long-term dietary selenium intake

Reference intervals

- Note: all reference intervals for selenium should be established locally because these are affected by dietary intake
- Plasma: 63 160 μg/L (0.8 2 μmol/L)
- Children <2 years: 16 71 µg/L (0.2 0.9 µmol/L)
- Children 2 4 years: 40 103 µg/L (0.5 1.3 µmol/L)
- Children 4 16 years: 55 134 µg/L (0.7 1.7 µmol/L)
- Cu-off values are 8 µg/L (0.1 µmol/L)

vitamin E & Selenium

- They have a synergically effect
- Se is necessary for pancreas action that is important for lipid and vitamin E absorptin
- Vitamin E decreased needs to Se because inhibit excretion of Se and cause stability of active form of Se

 The enzyme <u>glutathione peroxidase</u> which is involved with glutathione oxidation (2 GSH -----> GSSG) is a selenium containing enzyme, which explains the interrelationship between α-tocopherol and Se.

